PADIS

Pubblicazioni Aperte DIgitali Sapienza > MEDICINA SPERIMENTALE > MEDICINA MOLECOLARE >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10805/2360

Title: TRANSCRIPTIONAL LANDSCAPE OF NEURONAL and CANCER STEM CELLS
Authors: Miele, Evelina
Tutor: Ferretti, Elisabetta
Keywords: neuronal stem cells
medulloblastoma
cancer stem cells
transcriptome
deep sequencing
Issue Date: 22-Feb-2013
Abstract: Tumor mass is composed by heterogeneous cell population including a subset of “cancer stem cells” (CSC). Oncogenic signals foster CSC by transforming tissue stem cells or by reprogramming progenitor/differentiated cells towards stemness. Thus, CSC share features with cancer and stem cells (e.g. self-renewal, hierarchical developmental program leading to differentiated cells, epithelial/mesenchimal transition) and these latter are maintained by the constitutive activation of stemness-promoting signals. CSC could trigger tumor formation, drive to resistance to conventional therapeutics and underlie patients’ relapse. Indeed, stem cell signatures have been associated with poor prognosis in various. This background makes the identification of CSC molecular features mandatory to highlight the survival inner working and to design novel CSC specific therapeutic strategies. Medulloblastoma (MB) is the most common childhood malignant brain tumor and a leading cause of cancerrelated morbidity and mortality. Current multimodal therapies are effective in about 50% of patients but often cause long-term side effects, i.e. developmental, neurological, neuroendocrine and psychosocial deficits (Northcott PA Nature Rev cancer 2012). For many years, MB treated as a single tumor entity despite the divergent tumor histology, patients’ outcome and drug sensitivity, and also by the diversity of the stem cell of origin. Very recently the scenario of human MB has dramatically changed since its heterogeneous biology has been addressed by high-throughput gene expression analysis (oligonucleotide microarrays) or by the powerful genomic next-generation sequencing. These led to the identification of four tumor subgroups (WNT, SHH, Group 3 and Group 4) uncovering the existence of a highly diverse mutational spectra and gene expression. However a quantitative approach has not yet been applied to the transcriptional landscape of Medulloblastoma stem cells (MbSC) through RNA Next Generation Sequencing (RNA-Seq) technology. This is a relevant issue, since RNA-Seq is able to interrogate the genome wide global transcriptome including new transcripts, alternative spliced isoforms and non-coding RNAs. Lower rhombic lip progenitors of the dorsal brainstem are considered the trigger cells in WNT tumors; in SHH subgroup initiation cells are Prominin1+ CD15+ stem cells from the subventricular zone requiring the commitment to Math1+ granule cell progenitors [GCP] of the external granule cell layer [EGL]; while Math1+ or Math1- EGL-GCP or Prominin1+/lineage-negative stem cells sustain the MYC driven Group 3. MbSC derived from SHH tumors and postnatal normal cerebellar stem cells (NcSC) have been reported to share several features. A key signal for both of them is Hedgehog. Furthermore, both NcSC and MbSC display up-regulation of stemness genes (e.g Sox2, Nestin, Nanog, Prom1). Finally, constitutive activation of the Shh pathway by conditional deletion of Ptch1 inhibitory receptor in NcSC, promote medulloblastoma in vivo, producing a mouse model of the human SHH tumor. Acquisition of stemness features may therefore represent the first step of oncogenic conversion. Cooperation with additional oncogenic signals is however needed to enhance MbSC tumorigenicity. In order to understand the MbSCs transcriptional programs, we analyze by RNA-Seq, MbSC derived from Ptch1+/- tumors (Ptch1+/- MbSC). This choice, of a genetically determined model of MB, has allowed us to work with Ptch1+/- MbSC together with appropriate NcSC counterpart, and to analyze biological replicates doing statistical analysis. We identify a number of transcripts, annotated ones, novel isoforms, and long non-coding RNAs, characterizing MbSC and/or NcSC. Some of these genes control stemness or are cancer related and conserved in human medulloblastomas. Interestingly a subset of them, belonging to cell stress response, are of prognostic relevance being significantly related to clinical outcome. Correlation of genes expression characterizing MbSC with survival information from our human medulloblastomas database further demonstrates the significance of these findings. Our data suggest that the modulation of normal and cancer stem cell functions observed in vitro is effective in dissecting the transcriptional programs underlying the in vivo behavior of human medulloblastomas.
URI: http://hdl.handle.net/10805/2360
Research interests: Molecular Oncology, Clinical Oncology,Pediatric Brain Tumors,microRNA, RNA and transcriptome analysis, deep sequencing technologies,Signal transduction, Hedgehod signalling, Solid tumors
Appears in PhD:MEDICINA MOLECOLARE

Files in This Item:

File Description SizeFormat
Figures and Tables PhD Thesis Miele.pdfMain Figures, Supplementary Figures, Tables4.13 MBAdobe PDF
PhD Thesis Miele Evelina.pdfMain Text307.35 kBAdobe PDF


This item is protected by original copyright

Recommend this item

Items in PADIS are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback Sviluppo e manutenzione a cura del CINECA